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Abstract. This study highlights recent advancements in neural network accelerator 

design to enhance energy efficiency and performance. Two approaches are presented: 

an all-digital deep learning inference accelerator for Binary Neural Networks (BNNs), 

achieving high energy efficiency through Current-Mode Logic, wide inner product 

computation, lightweight pipelining, and data reuse; and an approach integrating 

Adaptive Linear Separability (ALS) for low-power approximate computing-based 

accelerators. The all-digital BNN accelerator achieves impressive energy efficiency of 

617 TOPS/W, approaching analog binary circuit numbers, while ALS integration 

demonstrates effectiveness in designing approximate computing components with 

minimal accuracy loss. Recommendations for future research include further 

exploration of circuit-level optimization, hybrid approaches, diverse neural network 

architectures, real-world datasets, hardware-software co-design, power-efficient 

training techniques, and emerging technologies. These recommendations aim to 

propel research towards more energy-efficient and high-performance neural network 

accelerators, advancing various machine learning applications. 

Keywords: Binary Neural Networks; Current-Mode Logic; Neural network 
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1. Introduction 

The rapid progress in machine learning and artificial intelligence (AI) has 

transformed various fields, relying heavily on deep neural networks for intricate 

pattern recognition and decision-making tasks. However, the growing need for 

real-time inference and energy-efficient computation poses challenges. Circuit-

level optimization is crucial for meeting these demands. Traditional architectures 

face bottlenecks due to data movement, prompting interest in specialized neural 

network accelerators. These accelerators leverage parallelism and locality in 

computations to maximize efficiency. Optimization involves diverse aspects such 

as architecture, memory, interconnect, and algorithm-hardware co-design. This 

research aims to develop innovative circuit-level optimization techniques for 

neural network accelerators, focusing on improving energy efficiency, latency, 



  
 

 

P-ISSN: 1908-322X and E-ISSN: 1908-3211  
Vol.3 No.1 (2024) 

Received: 01-05/ Revised: 03-15/ Accepted:03-20-2024 
https://neust.journalintellect.com/quest 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page 2 | The QUEST| Nueva Ecija University of Science and Technology, Graduate School 

and throughput. Leveraging integrated circuit advancements, the goal is to 

enable real-time inference and reduce power consumption in resource-

constrained environments. 

2. Methodology 

The methodology begins with the replication of both Accelerator A and 

accelerator B to ensure that the original designs are faithfully reproduced. The 

replication process involves setting up the necessary environment, including 

the required software and hardware components. The architecture and design 

of each accelerator are thoroughly examined, and any modifications or 

adjustments needed for replication are carefully documented. 

After replication, the performance testing and efficiency analysis stages are 

conducted to evaluate the capabilities of the neural network accelerators. 

2.1 Replication 

To replicate Accelerator A and Accelerator B, detailed information regarding 

their architecture and design is presented. This includes an overview of the key 

components, such as processing units, memory 

organization, and interconnects. Any proprietary or specialized features of the 

accelerators are also noted. The necessary modifications and adjustments 

needed to replicate the accelerators accurately are outlined, taking into account 

factors like hardware compatibility, software dependencies, and firmware 

requirements. Moreover, the tools, software, and hardware platforms used for 

replication are described. This includes specifying the software development 

frameworks, programming languages, simulation tools, and synthesis tools 

employed in the replication process. Additionally, the hardware platforms on 

which the replicative designs were implemented are mentioned, along with their 

specifications and capabilities. 

2.2 Performance Testing. 

Performance testing involves assessing the neural network accelerators' 

effectiveness in terms of throughput, latency, and power consumption. To 

conduct the performance tests, benchmark datasets and representative 

neural network models are selected. The datasets cover a range of input 

samples and represent diverse data distributions. The neural network models 

used are chosen to be representative of popular architectures and exhibit 
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varying complexities. The training process for the neural network models is 

outlined, including the choice of hyperparameters, such as learning rates, batch 

sizes, and optimization algorithms. The models are trained using the 

benchmark datasets, and their performance on the accelerators is valuated. 

Performance metrics, such as throughput (number of processed samples per 

unit time), latency (time taken to process a single sample), and power 

consumption, are measured and recorded. The performance results obtained 

for both Accelerator A and Accelerator B are presented and compared. 

Statistical analysis may be performed to assess the significance of any observed 

differences in performance. Graphs, tables, and visualizations are utilized to 

effectively present and interpret the performance data. 

2.3 Efficiency Analysis 

This section evaluates the energy and computational efficiency of neural 

network accelerators. It details methodologies for measuring energy 

consumption and computational efficiency, utilizing power sensors or energy 

meters. Results highlight strengths and limitations of both accelerators, 

emphasizing the impact of circuit-level optimization techniques on efficiency. 

The analysis includes comparisons across various neural network models and 

workloads for a comprehensive evaluation. 

2.4 Comparison and Analysis. 

The performance and efficiency results obtained for Accelerator A and 

Accelerator B are thoroughly compared and analyzed. Both quantitative and 

qualitative assessments, including ease of use, scalability, and versatility, are 

considered. Strengths and weaknesses of each accelerator are systematically 

evaluated, providing a comprehensive understanding. This analysis aids in 

identifying the optimal neural network accelerator based on specific 

requirements and constraints, offering valuable insights for decision-making in 

this domain. 

3. Results and Discussion 

3.1 Neural Network Accelerator A 

The design challenges in achieving low-energy single-gate multiplication for 

Binary Neural Network (BNN) accelerators require careful consideration. 

Conventional multibit system design decisions may not translate into an efficient 

BNN design, as depicted in Fig. 1, where an 8-bit neural network accelerator is 
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balanced in energy. Directly converting it to a BNN design with 1-bit multiply-

and-accumulate (MAC) units and a smaller SRAM shows improved energy 

efficiency in TOPS/W. However, this design becomes inefficient compared to the 

raw efficiency of 1-bit MAC operations due to significant SRAM and interconnect 

costs. To address this, the work aims for a design (Fig. 2) introducing high 

parallelism and data reuse to amortize memory access and data movement costs. 

The block diagram (Fig. 3) showcases a centralized control unit with four 256-

bit memory banks, overseeing 128 memory execution units (MEUs) with latch-

based memory and binary vector 

inner product computation for low-

energy weight access. Each MEU 

features a 1024-bit binary vector 

inner product compute with data 

reuse capabilities over two cycles. The 

dataflow involves processing a 

convolutional BNN layer by layer, loading filter weights into MEU latch-based 

memories for repeated use. Maximizing data reuse by processing a batch of 

images in parallel, MEUs perform inner product operations, generating 1-bit 

outputs. The 128 MEUs collectively produce one pixel from each of the 256-

output feature maps every two cycles. Output data is streamed back into the 

controller memory banks, repeating the process for each layer in the network. 

The weight filters larger than 2 × 2 can be constructed from either multiple 2 × 

2 × 256 base filters or multiple 1 × 1 × 1024 base filters. For example, four 2 × 

2 × 256 base filters can be used to implement a 4 × 4 × 256 filter, and nine 1 × 

1 × 1024 base filters can be used to implement a 3 × 3 × 1024 filter. The weight 

filters that are not a direct multiple of a base filter can cause MAC 

underutilization. 

Fig. 1. Block diagram of the 

BNN accelerator datapath. 

Fig. 2. Compute near-memory 

weight memory banking study. 

Fig. 3. Example BNN outer and inner 

product compute units. (a) 2 ×2 outer 

product 1× reduction. (b) 4× inner 

product 4× reduction. 
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3.1.1 Compute Near Memory 

The BNN accelerator incorporates CNM design principles to improve energy 

efficiency. One of the keys insights of CNM and CIM is recognizing that the 

movement of data between compute and memory can be an energy limiter for 

the design. The BNN design reduces data movement by keeping weight memory 

nominally stationary and interleaving memory and compute to minimize routing 

distance and memory access energy. This interleaved memory and compute have 

been implemented as an array of 128 MEUs in this design. The MEUs reduce data 

movement by tightly integrating local latch-based memories with binary inner 

product compute units. Fig. 4 illustrates the effects of reduced routing overhead 

on energy efficiency by increasing memory banking interleaved with compute. A 

graph of compute efficiency versus the number of memory banks for 8- and 1-

b systems is shown. Compute efficiency 

measures the ratio of compute energy to 

the sum of compute, memory, and 

interconnect energy with the equation 

given in Fig. 4. The 1-b design requires 

8× banking to achieve 75% compute 

efficiency compared with the 2× 

banking required for the 8-b design. 

Thus, the 1-b system requires 4× higher 

memory banking for the same compute 

efficiency. The increase in memory 

banking is caused by the significantly 

lower cost of computation associated 

with BNNs. 

3.1.2 Parallel Inner-Product Computation 

As highlighted previously, energy-efficient multibit design principles do not 

necessarily apply to BNNs. Outer product compute arithmetic blocks, such as the 

example 2 × 2 block shown in Fig. 5, are not efficient for BNNs. In outer product-

based arithmetic blocks, weights are broadcast across the rows, and the input 

activations are broadcast across the columns to these MACs, such that there is 

high data reuse as the array size increases. In comparison to the 4× inner product 

compute in Fig. 6, the 2 × 2 outer product unit uses half the number of inputs 

Fig. 4. MAC parallelism and 

reduction tree width. 
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and weights to perform the same amount of 

computation per cycle. However, the MAC 

units making up the outer product block are 

not efficient. The 2 × 2 outer products have 

a larger number of accumulators that have 

a 19× higher energy than the single-gate 

multiply.In order to improve binary 

arithmetic compute efficiency, inner 

product compute units are used. These 

units contain many 1-b multipliers 

operating in parallel with an adder 

reduction tree to amortize the cost of the 

accumulation and output registers across 

many operations. Adders within the accumulator tree have a lower bitwidth than 

the final accu-mulation, enabling energy savings compared with the outer 

product implementation. Fig. 7 shows the tradeoff between the inner product 

compute width and energy efficiency. For small reduction tree widths, there is a 

sharp improvement in energy efficiency as reduction tree size increases resulting 

from amortizing the fixed accumulator energy cost across more binary multiply 

and reduction operations. As the reduction tree width approaches 1024 b, energy 

efficiency saturates since the accumulator energy is nearly fully amortized. This 

design uses 1024-b-wide inner product compute for a 13× improvement in 

energy efficiency compared with a 1-b wide inner product unit. 

Neural Network Accelerator B 

3.2.1 Experiment Setup 

We use LeNet-5 and MNIST dataset [11] to study the effect of the proposed 

method. There are 50000 images in the training dataset and 10000 images in 

the test dataset. We use tiny-dnn [19], which is an open-source C++14 

implementation of deep learning, to simulate the accuracy of various LeNet-5 

accelerators built with different multipliers. For hardware cost study, we focus on 

the multipliers in the accelerators. The accurate and the approximate multipliers 

are mapped with the MCNC standard cell library [20] using the logic synthesis 

tool ABC [12]. The area and delay of the circuits are reported by ABC. 

Fig. 5. Pipelining design 

space exploration. 
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The baseline accelerator uses accurate 8-bit signed multipliers. Its accuracy is 

99:00%. The area and delay of an accurate 8-bit signed multiplier are listed in 

Table I. 

The training parameters include 50 

epochs, a learning rate of 0.001, and a 

mini-batch size of 16, with a target 

accuracy threshold of 97%. ALSRAC is 

employed to generate an approximate 

integer multiplier from the original 

accurate multiplier, considering a 

bound on the NMED error metric and an 

input distribution. NMED is defined as 

the mean absolute difference between 

accurate and approximate results, 

normalized to the maximum output 

value. The initial NMED bound is set to 

a small value E0, and the initial input 

distribution is uniform. After generating the approximate multiplier, it replaces 

accurate multipliers in the neural network accelerator for training. Inference on 

the test dataset is conducted, counting occurrences of each input pattern, and 

the results are normalized. 

3.2.2. Performance of the Proposed Method. 

We use the procedure described in Section III to generate the approximate 

multipliers and retrain the NN. We run 5 rounds in total. The NMED bounds for 

the 5 rounds are set as 0.001, 0.003, 0.006, 0.012, and 0.024, respectively. The 

area and delay of the multiplier generated in each round are listed in Table I. In 

the table, the accuracy of the NN 

accelerator using each 

approximate multiplier is also 

listed. For comparison purpose, 

we also consider a 2-bit rounded 

multiplier for 8-bit signed 

multiplication. It consists of a 2-

bit signed multiplier and the 

input rounding part, which 

Fig. 13.  The flow chart of our 

proposed method. 

 

Table 1. The Areas and Delays of Various Multipliers 

and the Accuracies of the Accelerators Built with 

These Multipliers. 
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rounds the 3 most significant bits of each 8-bit input into a 2-bit signed number. 

Table I also lists the area and delay of that multiplier together with the accuracy 

of the LeNet-5 accelerator built with it. 

We can see from Table I that after 5 

rounds, we can finally obtain an 

extremely small approximate multiplier. 

Its area is only 4:2% of the accurate 8-bit 

multiplier. After retraining, the 

accelerator with that multiplier still 

achieves an accuracy of 97:86%, which is 

only 1:14% less than the baseline 

accuracy. Compared to the 2-bit 

rounded multiplier, the final 

approximate multiplier has smaller area 

and shorter delay. Yet, the accelerator 

with the approximate multiplier achieves 

a higher accuracy than the one with the 

2-bit rounded multiplier.  

 

In Fig. 14, we show more details on the accuracy of the LeNet-5 accelerators 

with the final approximate multiplier (i.e., approximate multiplier 5 in Table I) 

and with the 2-bit rounded multiplier after retraining. We can see that the 

accelerator with the final approximate multiplier always has a higher accuracy 

than the one with the 2-bit rounded multiplier. 

Besides, as the approximate multiplier is generated by ALSRAC using the specific 

distribution from the NN computation, it is easy to retrain the NN model with the 

approximate multiplier. Thus, the training process does not require much time. 

Before retraining, the accuracy of the NN with the approximate multiplier is 

12:03%. However, after one epoch, the NN accuracy improves significantly. More 

details are shown in the inset of Fig. 14. After the first epoch, the accuracy of the 

NN increases to more than 96:0%. Then, it fluctuates between 96:9% and 97:86%. 

From this, we can see that very few epochs are needed to retrain the NN built 

with the final approximate multiplier. 

 

Fig. 14. Accuracy for retraining LeNet-5 

accelerators built with the final 

approximate multiplier and with the 2-

bit rounded multiplier. 
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4. Conclusions 

The significance of these findings lies in the potential for achieving improved 

power efficiency in NN accelerators by leveraging ALS within the design loop. By 

incorporating ALS into the design process, designers can optimize the 

approximate computing components to better match the unique characteristics 

of the NN being implemented. This tailored approach can lead to significant 

reductions in power consumption without compromising the accuracy of the 

NN's inference results. This work presents a new approach for designing low-

power approximate computing-based NN accelerators by integrating ALS into 

the design loop. The experimental results demonstrate the effectiveness of the 

proposed method, showing that it can generate highly efficient approximate 

computing components with minimal accuracy loss for the LeNet-5 architecture 

on the MNIST dataset. This approach opens up new possibilities for improving 

the power efficiency of NN accelerators by tailoring the approximate computing 

components to the specific computation patterns of the neural networks. 
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