5G Internet of Things (IoT) And Its Impact to Agricultural Technology: Basis for Strategic Plan
Published 06/30/2024
Keywords
- 5G-enabled IoT,
- Agricultural Technology,
- Stakeholders Profile,
- Connectivity,
- Access
- Technical Requirements ...More
How to Cite
Copyright (c) 2024 The QUEST: Journal of Multidisciplinary Research and Development
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Abstract
This study explored the integration and impact of 5G-enabled Internet of Things (IoT) technology in agricultural practices in Hainan Province, China, through a quantitative descriptive approach. The study encompasses responses from the participants, including farm managers, agricultural technology experts, and farm owners. It delves into the demographic and professional profiles of these respondents, revealing a majority in the 35-44 age group, predominantly female, with a significant number holding college degrees or higher and mostly farm owners. The impact of 5G-enabled IoT on agricultural technology is generally perceived positively by respondents. The shared understanding of 5G's potential positive influence on agricultural productivity, compatibility with existing setups, and operational performance underscores the transformative capabilities of this technology. However, the study also identifies challenges, including concerns regarding cost effectiveness, accuracy, and risk/security, which pose significant hurdles to the widespread adoption of these technologies. The proposed strategic plan suggests targeted outreach, awareness programs, and the development of innovative financing models and cybersecurity measures to foster a conducive environment for the adoption of 5G IoT in agriculture. In conclusion, the study provides insights into the current perception and impact of 5G-enabled IoT in agriculture, coupled with actionable recommendations to navigate the challenges and maximize the technology's potential benefits. This comprehensive approach aims to support stakeholders in the agricultural sector in leveraging 5G IoT for enhanced productivity and sustainability.
References
- Ang, Y., Sathian, D., Hou, C., Guo, Q., Shaoming, L., & Yong, H. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, doi: 10.1016/J.COMPAG.2020.105895
- Atalla, S., Tarapiah, S., Gawanmeh, A., Muhsen, M., Daradkeh, M., Mukhtar, H., Himeur, Y., Mansoor, W., Hashim, K. F., & Daadoo, M. (2023). IoT-Enabled Precision Agriculture: Developing an Ecosystem for Optimized Crop Management. Information, doi: 10.3390/info14040205
- Aydemir, M., & Cengiz, K. (2017). Emerging infrastructure and technology challenges in 5G wireless networks.
- Balaji, S., Shrimali, T., Shankar, T. P., & Santhakumar, R. (2023). Precision Agriculture Crop Recommendation System Using IoT and Machine Learning. doi: 10.1109/ViTECoN58111.2023.10157577
- Chehri, A., et al. (2020). A framework for optimizing the deployment of IoT for the precision agriculture industry. Procedia Computer Science, doi: 10.1016/J.PROCS.2020.09.312
- Di Palma, D., Bencini, L., Collodi, G., Manes, G., Fantacci, R., & Manes, A. (2010). Distributed Monitoring Systems for Agriculture based on Wireless Sensor Network Technology.
- Goss, M. J., Carvalho, M., & Brito, I. (2017). Challenges to Agriculture Systems. doi: 10.1016/B978-0-12-804244-1.00001-0
- Guo, J., Wang, L., Zhou, W., & Wei-Kan, C. (2022). Powering green digitalization: Evidence from 5 G network infrastructure in China. Resources Conservation and Recycling, doi: 10.1016/j.resconrec.2022.106286
- Guo, X. (2021). Application of agricultural IoT technology based on 5 G network and FPGA. Microprocessors and Microsystems, doi: 10.1016/J.MICPRO.2020.103597
- Hanis, N., Sabirin, A., Fadhil, N. F. M., & Arifin, J. (2022). Information Technology (IT) in the Agriculture Sector: Issues and Challenges. Social and management research journal, doi: 10.24191/smrj.v19i2.19307
- Ila, K., & Nupur, P. (2021). Applicability of IoT for Smart Agriculture: Challenges & Future Research Direction. doi: 10.1109/AIIOT52608.2021.9454209
- Jesi, V. E., et al. (2022). IoT Enabled Smart Irrigation and Cultivation Recommendation System for Precision Agriculture. ECS transactions, doi: 10.1149/10701.5953ecst
- Kaun, E. S. S., Cruz, A. W., Cunha, M. A., Proença, T. P. M., Marques, S., & da Silva, E. D. (2021). Cost-effectiveness in health: consolidated research and contemporary challenges. Palgrave Communications, doi: 10.1057/S41599-021-00940-5
- Kumar, R., et al. (2022). IoT Enabled Technologies in Smart Farming and Challenges for Adoption. doi: 10.1007/978-981-16-6210-2_7
- Kumar, R., et al. (2022). IoT Enabled Technologies in Smart Farming and Challenges for Adoption. doi: 10.1007/978-981-16-6210-2_7
- Martínez-Ortega, J. F., Díaz, V. H., & Martínez, N. L. (2023). Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability. Journal of Big Data, doi: 10.1186/s40537-023-00729-0
- Martínez-Ortega, J. F., Díaz, V. H., & Martínez, N. L. (2023). Big Data and precision agriculture: a novel spatio-temporal semantic IoT data management framework for improved interoperability. Journal of Big Data, doi: 10.1186/s40537-023-00729-0
- Mea, Y.-S. (2016). Impact of connectivity on sustainable development.
- Mea, Y.-S. (2016). Impact of connectivity on sustainable development.
- Mentsiev, A. U., & Gatina, F. F. (2021). Data analysis and digitalisation in the agricultural industry. doi: 10.1088/1755-1315/677/3/032101
- Mentsiev, A. U., & Gatina, F. F. (2021). Data analysis and digitalisation in the agricultural industry. doi: 10.1088/1755-1315/677/3/032101
- Mishra, V. (2023). Enhancing Crop Yields through IoT-Enabled Precision Agriculture. doi: 10.1109/ICDT57929.2023.10151422
- Mishra, V. (2023). Enhancing Crop Yields through IoT-Enabled Precision Agriculture. doi: 10.1109/ICDT57929.2023.10151422
- Naqvi, S. Z., et al. (2022). Role of 5G and 6G Technology in Precision Agriculture. doi: 10.3390/environsciproc2022023003
- Naqvi, S. Z., et al. (2022). Role of 5G and 6G Technology in Precision Agriculture. doi: 10.3390/environsciproc2022023003
- Ntihemuka, M., & Inoue, M. (2018). IoT Monitoring System for Early Detection of Agricultural Pests and Diseases. doi: 10.1109/SEATUC.2018.8788860
- Ntihemuka, M., & Inoue, M. (2018). IoT Monitoring System for Early Detection of Agricultural Pests and Diseases. doi: 10.1109/SEATUC.2018.8788860
- Padmalaya, N., K., K., & Ch., M. R. (2020). IoT-Enabled Agricultural System Applications, Challenges and Security Issues. doi: 10.1007/978-981-13-9177-4_7
- Padmalaya, N., K., K., & Ch., M. R. (2020). IoT-Enabled Agricultural System Applications, Challenges and Security Issues. doi: 10.1007/978-981-13-9177-4_7
- Ramsey, S. D. (2002). Cost effectiveness: con. Amyotrophic Lateral Sclerosis, doi: 10.1080/146608202320374336
- Ramsey, S. D. (2002). Cost effectiveness: con. Amyotrophic Lateral Sclerosis, doi: 10.1080/146608202320374336
- Raneesha, A., Madushanki, N., Malka, Halgamuge, W., Surangi, A.H., Wirasagoda, Ali, S. (2019). Adoption of the Internet of Things (IoT) in Agriculture and Smart Farming towards Urban Greening: A Review. International Journal of Advanced Computer Science and Applications, doi: 10.14569/IJACSA.2019.0100402
- Rishabh, R., & Avinash, A. (2022). IoT in Farm Productivity Enhancement. doi: 10.1109/DASA54658.2022.9765273
- Rishabh, R., & Avinash, A. (2022). IoT in Farm Productivity Enhancement. doi: 10.1109/DASA54658.2022.9765273
- Scott, D. R. (2002). Cost effectiveness: con. Amyotrophic Lateral Sclerosis, doi: 10.1080/146608202320374336
- Scott, D. R. (2002). Cost effectiveness: con. Amyotrophic Lateral Sclerosis, doi: 10.1080/146608202320374336
- Senapaty, M. K., Ray, A., & Padhy, N. (2023). IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture. Computers, doi: 10.3390/computers12030061
- Senapaty, M. K., Ray, A., & Padhy, N. (2023). IoT-Enabled Soil Nutrient Analysis and Crop Recommendation Model for Precision Agriculture. Computers, doi: 10.3390/computers12030061
- Shoba, M., et al. (2022). Survey on IoT based E-Farming Technology Enabled Farming. doi: 10.1109/ICSCDS53736.2022.9760870
- Shoba, M., et al. (2022). Survey on IoT based E-Farming Technology Enabled Farming. doi: 10.1109/ICSCDS53736.2022.9760870
- Shu-Ching, W., Wei-Ling, L., Chun-Hung, H., Mao-Lun, C., & Tung-Shou, C. (2021). The enhancement of agricultural productivity using the intelligent IoT. International Journal of Applied Science and Engineering, doi: 10.6703/IJASE.202103_18(1).005
- Shu-Ching, W., Wei-Ling, L., Chun-Hung, H., Mao-Lun, C., & Tung-Shou, C. (2021). The enhancement of agricultural productivity using the intelligent IoT. International Journal of Applied Science and Engineering, doi: 10.6703/IJASE.202103_18(1).005
- Sureshkumar, P. (2023). Review on the Real-time Implementation of IoT-enabled UAV in Precision Agriculture and the Overview of Collision Avoidance Strategies. The Philippine journal of science, doi: 10.56899/152.03.29
- Sureshkumar, P. (2023). Review on the Real-time Implementation of IoT-enabled UAV in Precision Agriculture and the Overview of Collision Avoidance Strategies. The Philippine journal of science, doi: 10.56899/152.03.29
- Tang, Y., Sathian, D., Hou, C., Guo, Q., Shaoming, L., & Yong, H. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, doi: 10.1016/J.COMPAG.2020.105895
- Tang, Y., Sathian, D., Hou, C., Guo, Q., Shaoming, L., & Yong, H. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, doi: 10.1016/J.COMPAG.2020.105895
- Thirumagal, P. G., et al. (2023). IoT and Machine Learning Based Affordable Smart Farming. doi: 10.1109/ICONSTEM56934.2023.10142329
- Thirumagal, P. G., et al. (2023). IoT and Machine Learning Based Affordable Smart Farming. doi: 10.1109/ICONSTEM56934.2023.10142329
- Weinert, B., & Uslar, M. (2020). Challenges for System of Systems in the Agriculture Application Domain. doi: 10.1109/SOSE50414.2020.9130552
- Weinert, B., & Uslar, M. (2020). Challenges for System of Systems in the Agriculture Application Domain. doi: 10.1109/SOSE50414.2020.9130552
- Weinstein, M. C. (1986). Challenges for cost-effectiveness research. Medical Decision Making, doi: 10.1177/0272989X8600600402
- Weinstein, M. C. (1986). Challenges for cost-effectiveness research. Medical Decision Making, doi: 10.1177/0272989X8600600402
- Zaigham, S., Naqvi, A., Saleem, S., Tahir, M. N., Li, S., Hussain, S., Haq, S. I. U., & Awais, M. (2022). Role of 5G and 6G Technology in Precision Agriculture. doi: 10.3390/environsciproc2022023003
- Zaigham, S., Naqvi, A., Saleem, S., Tahir, M. N., Li, S., Hussain, S., Haq, S. I. U., & Awais, M. (2022). Role of 5G and 6G Technology in Precision Agriculture. doi: 10.3390/environsciproc2022023003