Vol. 2 No. 2 (2023): The QUEST: Journal of Multidisciplinary Research and Development
Articles

Enhanced Productivity of Lettuce (Lactuca sativa L.) by Fermented Cardaba Banana in a Hydroponic Cultivation System

Melissa Medina
Nueva Ecija University of Science and Technology
Ardie Repil
Nueva Ecija University of Science and Technology
v2i2

Published 12/30/2023

Keywords

  • NFT hydroponics,
  • Income,
  • Yield,
  • Foliar,
  • Protected Farming

How to Cite

Medina, M., & Repil, A. (2023). Enhanced Productivity of Lettuce (Lactuca sativa L.) by Fermented Cardaba Banana in a Hydroponic Cultivation System. The QUEST: Journal of Multidisciplinary Research and Development, 2(2). https://doi.org/10.60008/thequest.v2i2.85

Abstract

The study entitled “Enhanced Productivity of Lettuce (Lactuca sativa L.) by Fermented Cardaba Banana in a Hydroponic Cultivation System." The study aimed to determine the productivity and financial feasibility of cultivating lettuce using soilless agricultural methods with the supplemental foliar application from the fermented cardaba banana (FCB). The study was analyzed using a Randomized Complete Block Design (RCBD) consisting of three (3) blocks and four (4) treatments - FCB – 0, 30, 45, 60. Lettuce seeds were sown in a seedling tray and hardened until it was transplanted (21DAS) in the Nutrient Film Technique (NFT). Seven-day interval application of FCB was applied until it was harvested (26 DAT). The data collected the following data - weight at harvest, marketable and non-marketable, yield per cycle, and net income. The results show that FCB-45 (p<0.05) has the highest non-marketable lettuce. On the other hand, FCB-60 (p<0.05) has the highest yield and marketable. Moreover, the FCB-60 shows the highest net income of Php 42,038.51.

Full PDF

References

  1. Ahmed, Z. F., Alnuaimi, A. K., Askri, A., & Tzortzakis, N. (2021). Evaluation of Lettuce (Lactuca sativa L.) Production under Hydroponic System: Nutrient Solution Derived from Fish Waste vs. Inorganic Nutrient Solution. Horticulturae, 7(9), 292. https://doi.org/10.3390/horticulturae7090292
  2. Borres, E., C., Basulgan, E., B., and Dalanon, R. L (2022). Potentialities Of Lettuce (Lactuca Sativa L.) In Hydroponics System Under Simple Nutrient Addition Program (SNAP). DOI: 10.52631/jemds.v2i1.62
  3. Cosico, T.A., Mappala, P., & Arceo A. (2011). Production Guide on Fermented Fruit Juice: Agricultural Training Institute. Retrieved from https://snaphydroponics.info/wp-content/uploads/2020/06/FFJ.pdf
  4. Espiritu R., & Karen M. (2021): Producciòn de briquetas vegetales utilizando el aserrin de madera y fibras de semilla de palma aceitera: Elaeis guineensis Jaqc para su uso como combustible solido. Retrieved from http://repositorio.unia.edu.pe/handle/unia/258
  5. Islam R, Solaiman AHM, Kabir MH, Arefin SMA, Azad MOK, Siddiqee MH, Alsanius BW and Naznin MT (2021). Evaluation of Lettuce Growth, Yield, and Economic Viability Grown Vertically on Unutilized Building Wall in Dhaka City. Front. Sustain. Cities 3:582431. doi: 10.3389/frsc.2021.582431
  6. Nguyen NT, McInturf SA, Mendoza-Cózatl DG (2016). Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. J Vis Exp. 2016 Jul 13;(113):54317. doi: 10.3791/54317. PMID: 27500800; PMCID: PMC5091364.
  7. Philippines Statistic Authority-PSA. (2020): 2016-2020 Crop Statistic Authority of the Philippines. Retrieved on https://psa.gov.ph
  8. Samonte (2018). Quality Native Saba Banana is Dingalan’s Pride: Magazine Agriculture. Retrieved from https://www.agriculture.com.ph/2018/03/10/quality-native-saba-banana-is-dingalans-pride/
  9. Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. P. (2018). Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation, 17(4), 364-371. http://dx.doi.org/10.5958/2455-7145.2018.00056.5
  10. Sharma, N., Acharya, S., Kumar, K., Singh, N., & Chaurasia, O. (2021): Hydroponics as an advanced technique for vegetable production: An overview. Journal of Soil and Water Conservation 17(364), 371.
  11. Sulok, K. M., Ahmed, O. H., Khew, C. Y., Zehnder, J. A., Jalloh, M. B., Musah, A. A., & Abdu, A. (2020). Chemical and Biological Characteristics of Organic Amendments Produced from Selected Agro-Wastes with Potential for Sustaining Soil Health: A Laboratory Assessment. Sustainability, 13(9), 4919. https://doi.org/10.3390/su13094919
  12. Talaat, N.B. Ghoniem, A.E. Abdelhamid, M.T. Shawky, B.T. (2014). Effective microorganisms improve growth performance, alter nutrient acquisition, and induce compatible solutes accumulation in common bean (Phaseolus vulgaris L.) plants subjected to salinity stress: Plant Growth Regul, 75, 281–295 https://doi.org/10.1007/s10725-014-9952-6
  13. Yadav, A.N.; Kumar, R.; Kumar, S.; Kumar, V.; Sugitha, T.; Singh, B.; Chauahan, V.S.; Dhaliwal, H.S.; Saxena, A.K. (2017). Beneficial Microbiomes: Biodiversity and potential biotechnological applications for sustainable agriculture and human health: J. Appl. Biol. Biotechnol. 2017, 5, 45–57. DOI: 10.7324/JABB.2017.50607